Pengembangan Model Hybrid untuk Identifikasi Tuberkulosis Pada Gambar Rontgen Dada

  • Ridwan Mahenra Universitas Teknokrat Indonesia
Keywords: Tuberkulosis, Model VGG-16, Pembelajaran mendalam, Jaringan Syaraf Tiruan, Sinar-X

Abstract

Tuberkulosis (TB), penyakit menular parah yang berdampak pada jutaan orang di seluruh dunia, umumnya didiagnosis dengan menggunakan rontgen dada. Untuk memastikan diagnosis yang akurat, terutama pada tahap awal, para profesional di bidang kesehatan mengandalkan dukungan teknologi canggih. Tidak seperti model yang sudah ada yang terutama berfokus pada deteksi TB pada gambar sinar-X, penelitian ini bertujuan untuk mengklasifikasikan gambar yang berhubungan dengan TB untuk memfasilitasi pemilihan metode yang tepat untuk deteksi TB yang tepat. Pendekatan yang diusulkan menggabungkan kemampuan yang kuat dari arsitektur VGG16 dengan jaringan syaraf tiruan (CNN) untuk tujuan klasifikasi. Memanfaatkan keefektifan VGG16 dalam menangkap fitur gambar yang penting, kami memodifikasinya untuk ekstraksi fitur untuk mengidentifikasi tanda-tanda TB pada gambar sinar-X. Untuk klasifikasi, CNN digunakan untuk mengkategorikan gambar yang terkena TB. Metode yang diusulkan ini dievaluasi menggunakan dataset standar, yang menunjukkan kinerja yang unggul dalam hal akurasi, recall, dan presisi dibandingkan dengan teknik yang ada saat ini.

References

Mandal, A. K. and Sarma, P. K. D. Usage of particle swarm optimization in digital images selection for monkeypox virus prediction and diagnosis. Malaysian Journal of Computer Science, 37, 2 (2024), 124- 138. https://doi.org/10.22452/mjcs.vol37no2.2.

Varsha and Maran, P. S. Multi-layered architecture convolution neural networks for diagnosing and predicting heart diseases on multi-modal. Malaysian Journal of Computer Science, sp2023, 1 (2023), 29- 43. https://doi.org/10.22452/mjcs.sp2023no1.3.

Sangermano, V., et al. Human factors implication in innovative strategies for containership fires prevention and management. Safety Management and Human Factors (2024). https://doi.org/10.54941/ahfe1005313.

Hansun, S., et al. Machine and deep learning for tuberculosis detection on chest X-rays: Systematic literature review. Journal of Medical Internet Research, 25 (2023), e43154. https://doi.org/10.2196/43154.

Rahman, T., et al. TB-CXRNet: Tuberculosis and drug-resistant tuberculosis detection technique using chest X-ray images. Cognitive Computation, 16, 3 (2024), 1393-1412. https://doi.org/10.1007/s12559-024- 10259-3.

dos Santos, P. R. S., et al. KochDet: BiFPN-based deep architecture for tuberculosis diagnosis. Biomedical Signal Processing and Control, 91 (2024), 106056. https://doi.org/10.1016/j.bspc.2024.106056.

Sharma, S. and Guleria, K. A deep learning based model for the detection of pneumonia from chest X-ray images using VGG-16 and neural networks. Procedia Computer Science, 218 (2023), 357-366. https://doi.org/10.1016/j.procs.2023.01.018.

Hansun, S., et al. Machine and deep learning for tuberculosis detection on chest X-rays: Systematic literature review. Journal of Medical Internet Research, 25 (2023), e43154. https://doi.org/10.2196/43154.

Yao, Q.-Y., Fu, M.-L., Zhao, Q., Zheng, X.-M., Tang, K. and Cao, L.-M. Image-based visualization of stents in mechanical thrombectomy for acute ischemic stroke: Preliminary findings from a series of cases. World Journal of Clinical Cases, 11, 21 (2023), 5047-5055. https://doi.org/10.12998/wjcc.v11.i21.5047.

Ayaz, M., Shaukat, F. and Raja, G. Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors. Physical and Engineering Sciences in Medicine, 44, 1 (2021), 183-194. https://doi.org/10.1007/s13246-020-00966-0.

Ibrahim, A. U., Guler, E., Guvenir, M., Suer, K., Serte, S. and Ozsoz, M. Automated detection of Mycobacterium tuberculosis using transfer learning. The Journal of Infection in Developing Countries, 15, 5 (2021), 678-686. https://doi.org/10.3855/jidc.13532.

Gelaw, Y., Getaneh, Z. and Melku, M. Anemia as a risk factor for tuberculosis: A systematic review and meta-analysis. Environmental Health and Preventive Medicine, 26, 1 (2021). https://doi.org/10.1186/s12199-020-00931-z.

Gröschel, M. I., et al. GenTB: A user-friendly genome-based predictor for tuberculosis resistance powered by machine learning. Genome Medicine, 13, 1 (2021). https://doi.org/10.1186/s13073-021-00953-4.

Ullah, U., Tahir, Z., Qazi, O., Mirza, S. and Cheema, M. I. Tuberculosis diagnosis from sputum using Raman spectroscopy. Biomedical Vibrational Spectroscopy 2022: Advances in Research and Industry (2022). https://doi.org/10.1117/12.2608594.

Ramachandran, P. S., et al. Integrating central nervous system metagenomics and host response for diagnosis of tuberculosis meningitis and its mimics. Nature Communications, 13, 1 (2022). https://doi.org/10.1038/s41467-022-29353-x.

Kuang, X., Wang, F., Hernandez, K. M., Zhang, Z. and Grossman, R. L. Accurate and rapid prediction of tuberculosis drug resistance from genome sequence data using traditional machine learning algorithms and CNN. Scientific Reports, 12, 1 (2022). https://doi.org/10.1038/s41598-022-06449-4.

Chavan, M., Varadarajan, V., Gite, S. and Kotecha, K. Deep neural network for lung image segmentation on chest X-ray. Technologies, 10, 5 (2022), 105. https://doi.org/10.3390/technologies10050105.

Park, M., et al. Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning. BMC Infectious Diseases, 23, 1 (2023). https://doi.org/10.1186/s12879-023-07996-5.

Boyina, K., Reddy, G. M., Akshita, G., Singh, R. P., Kumar, P. and Duraisamy, P. Detection and analysis of tuberculosis disease from chest X-ray (CXR) images using machine learning and deep learning techniques. 2024 3rd International Conference for Innovation in Technology (INOCON) (2024). https://doi.org/10.1109/inocon60754.2024.10511723.

Shome, N., Kashyap, R. and Laskar, R. H. Detection of tuberculosis using customized MobileNet and transfer learning from chest X-ray image. Image and Vision Computing, 147 (2024), 105063. https://doi.org/10.1016/j.imavis.2024.105063.

Wajgi, R., et al. Optimized tuberculosis classification system for chest X-ray images: Fusing hyperparameter tuning with transfer learning approaches. Engineering Reports (2024).

Rahman, T., et al. TB-CXRNet: Tuberculosis and drug-resistant tuberculosis detection technique using chest X-ray images. Cognitive Computation, 16, 3 (2024), 1393-1412. https://doi.org/10.1007/s12559-024- 10259-3.

Smith, J. P., Milligan, K., McCarthy, K. D., Mchembere, W., Okeyo, E., Musau, S. K., et al. Machine learning to predict bacteriologic confirmation of Mycobacterium tuberculosis in infants and very young children. PLOS Digital Health, 2, 5 (2023), e0000249. https://doi.org/10.1371/journal.pdig.0000249.

D. R., Sreevalli, B. M., Kulkarni, S., Gudla, S. and B. J., S. DeepXray: A deep learning based system for tuberculosis detection and severity prediction in chest X-rays. 2024 IEEE 9th International Conference for Convergence in Technology (I2CT) (2024). https://doi.org/10.1109/i2ct61223.2024.10543961.

Genitha, C. H., Kalaivani, I., Ajibah, A. S. H., Jalagandeswaran, S. and Balamurugan, K. Automated framework for the tuberculosis detection and classification in X-ray images using deep learning algorithm. 2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS) (2023). https://doi.org/10.1109/icssas57918.2023.10331715

Liu, Y., Wu, Y.-H., Zhang, S.-C., Liu, L., Wu, M. and Cheng, M.-M. Revisiting computer-aided tuberculosis diagnosis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 4 (2024), 2316-2332. https://doi.org/10.1109/tpami.2023.3330825.

Hossain, S., Islam, A., Lima, S., Ridoy, Md. S., Rahman, Md. M. and Sharmin, S. An effective identification of tuberculosis in chest X-rays using convolutional neural network model. 2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT) (2024). https://doi.org/10.1109/iceeict62016.2024.10534374.

Perez-Siguas, R., Matta-Solis, E., Remuzgo-Artezano, A., Matta-Solis, H., Matta-Perez, H. and Perez- Siguas, L. Chest X-ray imaging system for early detection of tuberculosis. 2023 Third International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT) (2023). https://doi.org/10.1109/icaect57570.2023.10117936.

Ogunlade, B., et al. Rapid, antibiotic incubation-free determination of tuberculosis drug resistance using machine learning and Raman spectroscopy. Proceedings of the National Academy of Sciences, 121, 25 (2024). https://doi.org/10.1073/pnas.2315670121.

Hrizi, O., et al. Tuberculosis disease diagnosis based on an optimized machine learning model. Journal of Healthcare Engineering, 2022 (2022), 1-13. https://doi.org/10.1155/2022/8950243.

Xie, X., et al. Evaluating cancer-related biomarkers based on pathological images: A systematic review. Frontiers in Oncology, 11 (2021). https://doi.org/10.3389/fonc.2021.763527.

He, B., et al. A new method for CTC images recognition based on machine learning. Frontiers in Bioengineering and Biotechnology, 8 (2020). https://doi.org/10.3389/fbioe.2020.00897.

Singh, M., et al. Evolution of machine learning in tuberculosis diagnosis: A review of deep learning-based medical applications. Electronics, 11, 17 (2022), 2634. https://doi.org/10.3390/electronics11172634.

Amin, S. U., Taj, S., Hussain, A. and Seo, S. An automated chest X-ray analysis for COVID-19, tuberculosis, and pneumonia employing ensemble learning approach. Biomedical Signal Processing and Control, 87 (2024), 105408. https://doi.org/10.1016/j.bspc.2023.105408.

Vimbi, V., Shaffi, N. and Mahmud, M. Interpreting artificial intelligence models: A systematic review on the application of LIME and SHAP in Alzheimer’s disease detection. Brain Informatics, 11, 1 (2024). https://doi.org/10.1186/s40708-024-00222-1.

Viswan, V., Shaffi, N., Mahmud, M., Subramanian, K. and Hajamohideen, F. Explainable artificial intelligence in Alzheimer’s disease classification: A systematic review. Cognitive Computation, 16, 1 (2023), 1-44. https://doi.org/10.1007/s12559-023-10192-x.

Published
2025-01-15
How to Cite
Mahenra, R. (2025). Pengembangan Model Hybrid untuk Identifikasi Tuberkulosis Pada Gambar Rontgen Dada. CHAIN: Journal of Computer Technology, Computer Engineering, and Informatics, 3(1), 1-13. https://doi.org/10.58602/chain.v3i1.166