Penerapan Rank Reciprocal dan Multi-Attributive Border Approximation Area Comparison Untuk Penentuan Lokasi Cafe Baru

  • Sanriomi Sintaro Universitas Sam Ratulangi
Keywords: Decision, Business Location, MABAC, Determination, Rank Reciprocal

Abstract

Determining the location for a new café involves careful and strategic considerations to ensure the success of the business. Geographical aspects such as local population, demographics, and level of competition in the area are the main factors considered. The combination of careful analysis of geographical factors, markets, as well as branding and business concepts, will help in determining the optimal location to open a successful new café. This study aims to provide recommendations for new café locations by applying a decision support system model, namely the reciprocal rank method to determine the weight of criteria and MABAC to assess the location of new cafes so that it will produce ranking recommendations for new locations. The application of reciprocal rank and MABAC methods in determining the location of new businesses gets the final results and provides recommendations for rank 1 with a final value of 0.4792 obtained by Location A, rank 2 with a final value of 0.2552 obtained by Location T, and rank 3 with a final value of 0.1512 obtained by Location D.

Downloads

Download data is not yet available.

References

Dwi Harini, “Rekomendasi Menentukan Lokasi Cabang Baru,” Nusant. Eng., vol. 6, no. 2, pp. 103–108, Oct. 2023, doi: 10.29407/noe.v6i2.21300.

Irfan, Amil A.Ilham, Imran Taufik, and D. Suarna, “Sistem Rekomendasi Penentuan Titik Usaha Kafe Menggunakan Data Spasial dan Algoritma Topsis,” Bull. Inf. Technol., vol. 4, no. 3, pp. 400–407, Sep. 2023, doi: 10.47065/bit.v4i3.918.

N. Permatasari, R. W. S. Insani S.Kom., M.Cs, and A. C. Siregar S.Kom., M.Cs, “Sistem Pendukung Keputusan Pemilihan Lokasi Strategis Usaha Warung Kopi Berbasis Web Menggunakan Metode AHP (Analytical Hierarcy Process) dan SAW (Simple Additive Weighting) (Studi Kasus: Kelurahan Sungai Bangkong),” Digit. Intell., vol. 2, no. 2, p. 85, Apr. 2022, doi: 10.29406/diligent.v2i2.3297.

A. R. Mishra, A. K. Garg, H. Purwar, P. Rana, H. Liao, and A. Mardani, “An extended intuitionistic fuzzy multi-attributive border approximation area comparison approach for smartphone selection using discrimination measures,” Informatica, vol. 32, no. 1, pp. 119–143, 2021.

S. Chakraborty, S. S. Dandge, and S. Agarwal, “Non-traditional machining processes selection and evaluation: A rough multi-attributive border approximation area comparison approach,” Comput. Ind. Eng., vol. 139, p. 106201, 2020.

S. Sintaro, “Multiple Criteria Decision Making Penentuan Juara Lomba Roasting Kopi Menggunakan Multi-Attributive Border Approximation Area Comparison,” J. Ilm. Comput. Sci., vol. 2, no. 2, pp. 58–69, 2024.

J. Fan, R. Guan, and M. Wu, “Z-MABAC method for the selection of third-party logistics suppliers in fuzzy environment,” Ieee Access, vol. 8, pp. 199111–199119, 2020.

V. Simic, I. Gokasar, M. Deveci, and A. Karakurt, “An integrated CRITIC and MABAC based type-2 neutrosophic model for public transportation pricing system selection,” Socioecon. Plann. Sci., vol. 80, p. 101157, 2022.

U. Hairah and E. Budiman, “Kinerja Metode Rank Sum, Rank Reciprocal dan Rank Order Centroid Menggunakan Referensi Poin Moora (Studi Kasus: Bantuan Kuota Data Internet untuk Mahasiswa),” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 6, pp. 1129–1136, 2022.

X. Lu, J. Wu, and J. Yuan, “Optimizing Reciprocal Rank with Bayesian Average for improved Next Item Recommendation,” in Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, pp. 2236–2240.

M. N. D. Satria and A. Surahman, “Kombinasi Metode Pembobotan Rank Reciprocal dan TOPSIS dalam Seleksi Penerimaan Staff IT,” J. Media Jawadwipa, vol. 1, no. 2, pp. 55–65, 2024, doi: 10.58602/mediajawadwipa.v1i2.47.

S. H. Hadad, “Metode Simple Multi-Attribute Rating Technique (SMART) dan Rank Reciprocal (RR) dalam Penentuan Penerima Beasiswa,” J. Data Sci. Inf. Syst., vol. 2, no. 1, pp. 18–28, 2024, doi: 10.58602/dimis.v2i1.99.

Setiawansyah, A. A. Aldino, P. Palupiningsih, G. F. Laxmi, E. D. Mega, and I. Septiana, “Determining Best Graduates Using TOPSIS with Surrogate Weighting Procedures Approach,” in 2023 International Conference on Networking, Electrical Engineering, Computer Science, and Technology (IConNECT), 2023, pp. 60–64. doi: 10.1109/IConNECT56593.2023.10327119.

H. Sulistiani, Setiawansyah, P. Palupiningsih, F. Hamidy, P. L. Sari, and Y. Khairunnisa, “Employee Performance Evaluation Using Multi-Attribute Utility Theory (MAUT) with PIPRECIA-S Weighting: A Case Study in Education Institution,” in 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS), 2023, pp. 369–373. doi: 10.1109/ICIMCIS60089.2023.10349017.

S. Sintaro and T. Yulianti, “SPK Pemilihan Calon Mekanik pada Perusahaan Transportasi Antar Kota Menggunakan Metode Analytic Hierarki Process (AHP),” J. Media Celeb., vol. 1, no. 2, pp. 66–75, 2024.

A. D. Wahyudi and A. F. O. Pasaribu, “Metode SWARA dan Multi Attribute Utility Theory Untuk Penentuan Pemasok Pakan Ikan Terbaik,” J. Media Jawadwipa, vol. 1, no. 1, pp. 26–37, 2023.

Published
2024-03-01
How to Cite
Sintaro, S. (2024). Penerapan Rank Reciprocal dan Multi-Attributive Border Approximation Area Comparison Untuk Penentuan Lokasi Cafe Baru. Journal of Artificial Intelligence and Technology Information, 2(1), 26-37. https://doi.org/10.58602/jaiti.v2i1.103