Penerapan Metode Preference Selection Index Terhadap Pemilihan Sales Terbaik
Abstract
Salesperson is an important part in a company that is responsible for selling products or services to potential customers. A salesperson's job is not only limited to selling, but also includes building strong relationships with customers, understanding their needs, and providing appropriate solutions. The best salespeople are those who have a combination of strong interpersonal skills, a deep understanding of the product or service they sell, and a dedication to providing the best service to customers. One of the main problems in choosing the best salesperson is finding a balance between technical skills and interpersonal skills. While having a solid knowledge of the products or services they sell is crucial, the ability to communicate effectively and build good relationships with customers is also crucial. The Preference Selection Index (PSI) method is an approach that allows evaluation and ranking of alternatives based on preferences relative to established criteria. The PSI method of selecting the best sales can be used to evaluate sales performance based on a number of predetermined criteria. By applying the PSI method, this study seeks to provide a more systematic and structured approach in assessing and selecting the best sales, which is expected to produce more accurate and objective recommendations. The ranking results show, for the first rank with a final PSI value of 0.912 obtained by Sales GS, the second rank with a final PSI value of 0.901 obtained by Sales HR, the third rank with a final PSI value of 0.888 obtained by Sales YP.
Downloads
References
H. Endres, R. Helm, C. Schmitz, and C. Hofstetter, “Do business customers perceive what salespeople believe? Perceptions of salesperson adoption of innovations,” J. Prod. Innov. Manag., vol. 40, no. 1, pp. 120–136, Jan. 2023, doi: 10.1111/jpim.12645.
J. M. Lawrence, L. K. Scheer, A. T. Crecelius, and S. K. Lam, “Salesperson dual agency in price negotiations,” J. Mark., vol. 85, no. 2, pp. 89–109, 2021, doi: 10.1177/00222429209746.
R. R. Abadi, M. I. M. Haeruddin, M. Y. Mustafa, M. U. Data, and N. Nurjannah, “Kajian Literatur: Strategi Personal Selling Melalui Relationship Marketing Pasca Pandemi COVID-19,” J. Ris. Bisnis, Manajemen, dan Ilmu Ekon., vol. 1, no. 1, pp. 1–7, 2024.
R. T. Oktavia, “THE ROLE OF TRUST AS MEDIATION ON SALESPERSON’S EXPERTISE TO REPURCHASE INTENTION,” Inspirasi Ekon. J. Ekon. Manaj., vol. 5, no. 1, pp. 1–10, Apr. 2023, doi: 10.32938/ie.v5i1.4215.
A. Kumar and M. Kumar, “Mechanical and Sliding Wear Performance of ZA27-Gr Alloy Composites for Bearing Applications: Analysis Using Preference Selection Index Method,” in Advanced Composites, Springer, 2023, pp. 317–341.
S. K. Mahapatra and A. Satapathy, “Parametric analysis of erosion wear of sponge iron slag-filled ramie–epoxy composites using Taguchi and preference selection index methods,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., p. 09544089231193927, 2023.
D. T. Do and N.-T. Nguyen, “Investigation of the Appropriate data normalization method for combination with preference selection index method in MCDM,” Oper. Res. Eng. Sci. Theory Appl., 2022.
R. Verma, M. S. Azam, and S. R. Kumar, “Performance evaluation of glass ionomer and alumina‐silica nanoparticle reinforced dental composite using preference selection index,” Polym. Compos., vol. 43, no. 6, pp. 3745–3752, Jun. 2022, doi: 10.1002/pc.26652.
T. Singh, S. Tejyan, A. Patnaik, R. Chauhan, and G. Fekete, “Optimal design of needlepunched nonwoven fiber reinforced epoxy composites using improved preference selection index approach,” J. Mater. Res. Technol., vol. 9, no. 4, pp. 7583–7591, Jul. 2020, doi: 10.1016/j.jmrt.2020.04.101.
W. I. Safitri, M. Mesran, and S. Sarwandi, “Penerapan Metode Preference Selection Index (PSI) Dalam Penerimaan Staff IT,” Bull. Informatics Data Sci., vol. 1, no. 1, p. 1, May 2022, doi: 10.61944/bids.v1i1.1.
A. Yudistira, “Analisa Dalam Pengambilan Keputusan Penentuan Lokasi Usaha Menggunakan Metode Preference Selection Index (PSI),” J. Ilm. Comput. Sci., vol. 1, no. 1, pp. 31–40, 2022, doi: 10.58602/jics.v1i1.4.
Y. Rahma and S. Maryana, “Seleksi Penerimaan Staff Admin Gudang Menggunakan Metode Preference Selection Index (PSI),” J. Artif. Intell. Technol. Inf., vol. 1, no. 4, pp. 164–171, 2023.
M. Y. Safii and E. Ardhianto, “Sistem Pendukung Keputusan dalam Pemilihan Sales Marketing Terbaik Menggunakan Simple Additive Weighting (SAW) Berbasis Website (Studi Kasus: PT. Citra Swarna Group (CSG),” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 1, pp. 137–144, Jan. 2024, doi: 10.35870/jtik.v8i1.1358.
P. Citra, I. W. Sriyasa, and H. B. Santoso, “Sistem Pendukung Keputusan Penentuan Kinerja Sales Terbaik Menggunakan Kombinasi Grey Relational Analysis dan Pembobotan Rank Sum,” J. Ilm. Comput. Sci., vol. 2, no. 2, pp. 99–108, Jan. 2024, doi: 10.58602/jics.v2i2.26.
Diah Eka Setyowati, B. A. Nugroho, and R. Widyastuti, “Implementasi Metode Moora Untuk Sistem Pendukung Keputusan Pemilihan Sales Terbaik Pada PD Anugrah Abadi Baru,” J. Inform. dan Multimed., vol. 15, no. 2, pp. 25–33, Dec. 2023, doi: 10.33795/jtim.v15i2.4795.
F. A. Fadillah, D. L. Rahmah, and D. Marlina, “Sistem Pemilihan Sales Terbaik dengan Metode Topsis di PT Dahua Vision Technology Indonesia,” JRKT (Jurnal Rekayasa Komputasi Ter., vol. 3, no. 04, pp. 171–178, Dec. 2023, doi: 10.30998/jrkt.v3i04.9116.
Copyright (c) 2024 Sanriomi Sintaro
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.