Analisis Prioritas Pemberian Cuti Karyawan Menggunakan Metode Pembobotan Entropy dan Simple Multi Attribute Rating Technique
Abstract
Employee leave is a right given to employees to take free time or vacation without reducing salary or wages. This leave is important to maintain the health and well-being of employees, as well as to ensure that employees can feel valued and given the opportunity to live free time or vacation. Prioritizing employee leave is often a challenge, especially when there are many leave applications submitted simultaneously. The purpose of this study is to develop a system or model that can assist managers or human resources departments in making more informed and structured decisions regarding the provision of leave to employees. Using entropy and SMART weighting methods, this study helps to assess and give weight to the criteria that influence the priority of granting leave. The ranking results showed results, namely rank 1 in the provision of employee leave with a value of 0.8449 obtained by Employee 6, rank 2 in the provision of employee leave with a value of 0.8061 obtained by Employee 1, rank 3 in the provision of employee leave with a value of 0.5442 obtained by Employee 2, rank 4 in the provision of employee leave with a value of 0.465 obtained by Employee 3 and Employee 5, and 4th place in the provision of employee leave with a value of 0.0581 obtained by Employee 4. The results of this ranking become a recommendation for companies in setting leave priorities for existing employees, thus assisting company stakeholders in making decisions based on the results of recommendations carefully.
Downloads
References
M. Mayang Sari, D. Apriani, Y. Supriatna, and A. Ariyansyah, “Penggunaan Media Digital (Website) Dalam Pengolahan Data Cuti Karyawan,” Technomedia J., vol. 7, no. 1 Juni, pp. 126–135, Feb. 2022, doi: 10.33050/tmj.v7i1.1795.
N. Nursobah and R. Andrea, “Sistem Pendukung Keputusan Penentuan Lokasi Strategis Dalam Membangun Bisnis Usaha Menggunakan Metode Promethee II,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 2, p. 1064, Apr. 2022, doi: 10.30865/mib.v6i2.3997.
S. Setiawansyah, “Sistem Pendukung Keputusan Rekomendasi Tempat Wisata Menggunakan Metode TOPSIS,” J. Ilm. Inform. dan Ilmu Komput., vol. 1, no. 2, pp. 54–62, 2022, doi: 10.53513/jursi.v1i3.5269.
P. Citra, I. W. Sriyasa, and H. B. Santoso, “Sistem Pendukung Keputusan Penentuan Kinerja Sales Terbaik Menggunakan Kombinasi Grey Relational Analysis dan Pembobotan Rank Sum,” J. Ilm. Comput. Sci., vol. 2, no. 2, pp. 99–108, Jan. 2024, doi: 10.58602/jics.v2i2.26.
A. Karthikeyan, A. Garg, P. K. Vinod, and U. D. Priyakumar, “Machine learning based clinical decision support system for early COVID-19 mortality prediction,” Front. public Heal., vol. 9, p. 626697, 2021.
R. Rosati et al., “From knowledge-based to big data analytic model: a novel IoT and machine learning based decision support system for predictive maintenance in Industry 4.0,” J. Intell. Manuf., vol. 34, no. 1, pp. 107–121, Jan. 2023, doi: 10.1007/s10845-022-01960-x.
A. Aytekin, “DETERMINING CRITERIA WEIGHTS FOR VEHICLE TRACKING SYSTEM SELECTION USING PIPRECIA-S,” J. Process Manag. new Technol., vol. 10, no. 1–2, pp. 115–124, Jun. 2022, doi: 10.5937/jpmnt10-38145.
M. N. D. Satria, “Sistem Pendukung Keputusan Penerimaan Staff Administrasi Menggunakan Metode VIKOR,” J. Artif. Intell. Technol. Inf., vol. 1, no. 1, pp. 39–49, 2023.
A. F. O. Pasaribu and N. Nuroji, “Sistem Pendukung Keputusan Penentuan Pelanggan Terbaik Menggunakan Profile Matching,” J. Data Sci. Inf. Syst., vol. 1, no. 1, pp. 24–31, 2023.
A. Surahman, “Penilaian Kinerja Karyawan Menggunakan Kombinasi Metode Multi-Objective Optimization by Ratio Analysis (MOORA) dan Pembobotan Entropy,” Chain J. Comput. Technol. Comput. Eng. Informatics, vol. 2, no. 1, pp. 28–36, 2024.
S. Setiawansyah, “Penerapan Metode Entropy dan Grey Relational Analysis dalam Evaluasi Kinerja Karyawan,” J. Data Sci. Inf. Syst., vol. 2, no. 1, pp. 29–39, 2024, doi: 10.58602/dimis.v2i1.100.
D. Nurnaningsih and S. Setiawansyah, “Sistem Pendukung Keputusan untuk Optimalisasi Pemilihan Agen Penjualan Menggunakan Metode Entropy dan Multi Attribute Utility Theory,” J. Media Jawadwipa, vol. 1, no. 2, pp. 44–54, 2024, doi: 10.58602/mediajawadwipa.v1i2.46.
T. Singh, “Entropy weighted WASPAS and MACBETH approaches for optimizing the performance of solar water heating system,” Case Stud. Therm. Eng., vol. 53, p. 103922, Jan. 2024, doi: 10.1016/j.csite.2023.103922.
Q. Song, Z. Wang, and T. Wu, “Risk analysis and assessment of water resource carrying capacity based on weighted gray model with improved entropy weighting method in the central plains region of China,” Ecol. Indic., vol. 160, p. 111907, Mar. 2024, doi: 10.1016/j.ecolind.2024.111907.
Z. E. Satı, “Comparison of the criteria affecting the digital innovation performance of the European Union (EU) member and candidate countries with the entropy weight-TOPSIS method and investigation of its importance for SMEs,” Technol. Forecast. Soc. Change, vol. 200, p. 123094, Mar. 2024, doi: 10.1016/j.techfore.2023.123094.
J. Junjie, S. Wenhao, and W. Yuan, “A risk assessment approach for road collapse along tunnels based on an improved entropy weight method and K-means cluster algorithm,” Ain Shams Eng. J., p. 102805, Apr. 2024, doi: 10.1016/j.asej.2024.102805.
R. D. Aristianingrum, H. Sulaiman, and I. Kurniawan, “Sistem Pendukung Keputusan Pengajuan Cuti Karyawan Dengan Metode Analytic Hierarchy Process (Ahp) Pada Pt Immortal Cosmedika Indonesia,” J. Math. Technol., vol. 2, no. 2, pp. 232–240, 2023.
A. T. Cahyono and S. Wibisono, “Sistem Pendukung Keputusan untuk Penilaian Kinerja Pegawai menggunakan Metode AHP dan COPRAS,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 1, pp. 58–66, Jan. 2024, doi: 10.35870/jtik.v8i1.1292.
A. F. A. Natsir and I. Najiyah, “SISTEM PENDUKUNG KEPUTUSAN CUTI PEGAWAI DI PUSDIKKU TNI AD DENGAN MENGGUNAKAN METODE SAW BERBASIS WEB,” eProsiding Tek. Inform., vol. 2, no. 1, pp. 21–27, 2021.
H. Sulistiani, Setiawansyah, P. Palupiningsih, F. Hamidy, P. L. Sari, and Y. Khairunnisa, “Employee Performance Evaluation Using Multi-Attribute Utility Theory (MAUT) with PIPRECIA-S Weighting: A Case Study in Education Institution,” in 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS), 2023, pp. 369–373. doi: 10.1109/ICIMCIS60089.2023.10349017.
Setiawansyah, A. A. Aldino, P. Palupiningsih, G. F. Laxmi, E. D. Mega, and I. Septiana, “Determining Best Graduates Using TOPSIS with Surrogate Weighting Procedures Approach,” in 2023 International Conference on Networking, Electrical Engineering, Computer Science, and Technology (IConNECT), 2023, pp. 60–64. doi: 10.1109/IConNECT56593.2023.10327119.
Copyright (c) 2024 Sitna Hajar Hadad
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.