Kombinasi Metode Rank Reciprocal dan MARCOS Dalam Pemilihan Kinerja Guru Terbaik

  • Sandi Badiwibowo Atim Universitas Lampung
Keywords: Teacher, Performance, MARCOS, Rank Reciprocal, Best

Abstract

Problems in teacher performance evaluation often include several aspects that can hinder effectiveness and fairness in the process, especially in subjectivity in assessment. Many evaluation methods still rely on subjective judgments from superiors or peers, which can result in bias and unfairness. The purpose of this study is to develop a more objective and transparent teacher performance evaluation system by combining the reciprocal and MARCOS rank methods. In addition, this research is also to provide effective recommendations in the selection of the best teachers based on relevant criteria, in order to improve the quality of education in related institutions. The combination of the reciprocal rank and MARCOS methods in selecting the best teacher performance is an innovative approach to evaluate and rank teachers based on predetermined criteria, such as pedagogical competence, material mastery, communication skills, and managerial ability. The results of the ranking of the best teacher performance show that Dian Lestari ranks highest with a score of 1.8959, followed by Fitria Sari with a score of 1.8559 and Andi Santoso in third place with a score of 1.8523. These results show that Dian Lestari has the most superior performance compared to her peers in various aspects of the assessment applied.

Downloads

Download data is not yet available.

References

N. D. Puspa, M. Mesran, and A. F. Siregar, “Penerapan Metode Maut Dengan Pembobotan Entropy Dalam Sistem Pendukung Keputusan Penilaian Kinerja Guru Honor,” J. Inf. Syst. Res., vol. 5, no. 1, pp. 24–33, 2023.

M. F. Firdhaus, “IMPLEMENTASI METODE SAW SISTEM PENDUKUNG KEPUTUSAN DALAM MENGEVALUASI KINERJA GURU HONORER SDN REJOSO KIDUL,” SPIRIT, vol. 15, no. 2, 2023.

S. H. Hadad, “Penerapan Metode Additive Ratio Assessment (ARAS) Dalam Pemilihan Guru Terbaik,” Chain J. Comput. Technol. Comput. Eng. Informatics, vol. 1, no. 4, pp. 170–178, 2023.

S. Setiawansyah and A. Sulistiyawati, “Penerapan Metode Logarithmic Percentage Change-Driven Objective Weighting dan Multi-Attribute Utility Theory dalam Penerimaan Guru Bahasa Inggris,” J. Artif. Intell. Technol. Inf., vol. 2, no. 2, pp. 62–75, 2024, doi: 10.58602/jaiti.v2i2.119.

A. R. Mishra, D. K. Tripathi, F. Cavallaro, P. Rani, S. K. Nigam, and A. Mardani, “Assessment of Battery Energy Storage Systems Using the Intuitionistic Fuzzy Removal Effects of Criteria and the Measurement of Alternatives and Ranking Based on Compromise Solution Method,” Energies, vol. 15, no. 20, p. 7782, Oct. 2022, doi: 10.3390/en15207782.

S. Bošković, L. Švadlenka, M. Dobrodolac, S. Jovčić, and M. Zanne, “An Extended AROMAN Method for Cargo Bike Delivery Concept Selection,” Decis. Mak. Adv., vol. 1, no. 1, pp. 1–9, Jun. 2023, doi: 10.31181/v120231.

Á. S. Hervella, J. Rouco, J. Novo, and M. Ortega, “Multimodal reconstruction of retinal images over unpaired datasets using cyclical generative adversarial networks,” Generative Adversarial Networks for Image-to-Image Translation. Elsevier, pp. 347–376, 2021. doi: 10.1016/b978-0-12-823519-5.00014-2.

I. M. Hezam, A. K. Mishra, D. Pamucar, P. Rani, and A. R. Mishra, “Standard deviation and rank sum-based MARCOS model under intuitionistic fuzzy information for hospital site selection,” Kybernetes, 2023.

S. Chakraborty, P. Chatterjee, and P. P. Das, “Measurement Alternatives and Ranking according to Compromise Solution (MARCOS) Method,” in Multi-Criteria Decision-Making Methods in Manufacturing Environments, Apple Academic Press, 2024, pp. 297–307.

P. Palupiningsih and S. Setiawansyah, “Best Sales Selection Using a Combination of Reciprocal Rank Weighting Method and Multi-Attribute Utility Theory,” J. Comput. Informatics Res., vol. 3, no. 3, pp. 242–250, Jul. 2024, doi: 10.47065/comforch.v3i3.1496.

S. H. Hadad, “Metode Simple Multi-Attribute Rating Technique (SMART) dan Rank Reciprocal (RR) dalam Penentuan Penerima Beasiswa,” J. Data Sci. Inf. Syst., vol. 2, no. 1, pp. 18–28, 2024, doi: 10.58602/dimis.v2i1.99.

X. Lu, J. Wu, and J. Yuan, “Optimizing Reciprocal Rank with Bayesian Average for improved Next Item Recommendation,” in Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, pp. 2236–2240.

F. Ariany, R. R. Suryono, and S. Setiawansyah, “Decision Support System for Tourist Attraction Recommendations Using Reciprocal Rank and Multi-Objective Optimization on the basis of Ratio Analysis,” Build. Informatics, Technol. Sci., vol. 5, no. 3, pp. 636–648, 2023, doi: 10.47065/bits.v5i3.4663.

S. Sintaro, “Penerapan Rank Reciprocal dan Multi-Attributive Border Approximation Area Comparison Untuk Penentuan Lokasi Cafe Baru,” J. Artif. Intell. Technol. Inf., vol. 2, no. 1, pp. 26–37, 2024.

A. Syaefudin and S. K. Sianturi, “Sistem Pendukung Keputusan Pemilihan Guru Terbaik Berbasis Kinerja Dengan Metode Profile Maching (Studi Kasus Pada Sma Negeri 3 Cilegon),” J. Insa. Unggul, vol. 12, no. 2, pp. 205–220, 2024.

A. Oktarian, A. Sulkhan, and A. Mico Wahono, “Penilaian Kinerja Guru Berprestasi Dalam Rangka Peningkatan Kualitas Kerja Dengan Metode Analytical Hierarchy Process,” J. Compr. Sci., vol. 2, no. 8, pp. 1455–1464, Aug. 2023, doi: 10.59188/jcs.v2i8.499.

A. Martin, N. Andriyani, and J. Joni, “Sistem Pendukung Keputusan Penilaian Kinerja Guru Terbaik Sma Xaverius Pringsewu Berbasis Web Menggunakan Metode Weighting Product (WP),” SEAT J. Softw. Eng. Technol., vol. 4, no. 1, pp. 9–16, 2024, doi: 10.69769/seat.v4i1.173.

H. Khotimah, M. T. A. Zaen, and K. Imtihan, “IMPLEMENTASI METODE AHP DAN SAW DALAM PEMILIHAN GURU TERBAIK DI SMK PLUS MUNIRUL ARIFIN NW PRAYA,” J. Inform. Teknol. dan Sains, vol. 6, no. 2, pp. 314–321, Jun. 2024, doi: 10.51401/jinteks.v6i2.4149.

Published
2024-09-30