Penerapan Metode Simple Additive Weighting dan Pembobotan Entropy Untuk Penentuan Teknisi Terbaik

  • Aditia Yudhistira Universitas Teknokrat Indonesia
Keywords: Entropy, Election, Determination, SAW, Technician

Abstract

Determining the best technicians in a company is often a challenge due to a variety of factors that need to be considered. Each technician has different advantages and disadvantages, making objective performance measurement difficult. This problem is often exacerbated by the subjectivity of assessments, especially if the evaluation is based solely on the subjective assessment of the supervisor or management team without considering in-depth performance data. The application of the SAW method with entropy weighting for the determination of the best technician is an approach that combines a simple calculation process with objective criterion weighting, based on the degree of variability of data between technicians. The combined application of SAW and entropy provides a fair, objective, assessment system in determining the best technicians, which is able to help companies to identify the technicians with the most superior performance. The results of the analysis of the selection of the best technician using the SAW method show that Technician E is ranked at the top with a final score of 0.8619, making it the best choice based on the criteria that have been assessed. The next ranking was filled by Technician A with a score of 0.8381, and Technician C who obtained a score of 0.8310, showing their excellent performance.

Downloads

Download data is not yet available.

References

J. Hutahaean and J. Hutagalung, “Sistem Pendukung Keputusan Pemilihan Teknisi Terbaik Menggunakan Metode Fuzzy Tsukamoto,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 846, Aug. 2022, doi: 10.30865/jurikom.v9i4.4519.

Y. A. Prasetyo and P. A. R. Devi, “Implementasi Metode SAW dengan Pembobotan ROC dalam Menentukan Teknisi Terbaik pada PT. KAS,” Ilk. J. Comput. Sci. Appl. Informatics, vol. 4, no. 3, pp. 316–326, 2022, doi: 10.28926/ilkomnika.v4i3.524.

T. S. Arista and D. Novita, “Sistem Pendukung Keputusan Penentuan Teknisi Terbaik PT Sapta Karya Manunggal Menggunakan Metode Topsis Berbasis Website,” in MDP Student Conference, 2024, vol. 3, no. 1, pp. 981–987. doi: 10.35957/mdp-sc.v3i1.7616.

Dwi Harini, “Rekomendasi Menentukan Lokasi Cabang Baru,” Nusant. Eng., vol. 6, no. 2, pp. 103–108, Oct. 2023, doi: 10.29407/noe.v6i2.21300.

A. Raynaldi, A. Ikhwan, and M. D. Irawan, “Implementasi AHP Dan Promethee Dalam Pemilihan Bengkel Resmi Terbaik Di Deli Serdang,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 6, no. 2, p. 687, Jul. 2023, doi: 10.53513/jsk.v6i2.8363.

E. I. Sinaga, K. Naipospos, A. P. Nasution, and D. Pratiwi, “PENERAPAN METODE AHP DALAM SISTEM PENDUKUNG KEPUTUSAN UNTUK MENILAI DAN MEMILIH PELANGGAN TERBAIK PADA BISNIS LAUNDRY DI (AIR BATU),” JUTSI J. Teknol. dan Sist. Inf., vol. 4, no. 2, pp. 131–140, 2024.

H. Sulistiani, Setiawansyah, P. Palupiningsih, F. Hamidy, P. L. Sari, and Y. Khairunnisa, “Employee Performance Evaluation Using Multi-Attribute Utility Theory (MAUT) with PIPRECIA-S Weighting: A Case Study in Education Institution,” in 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS), 2023, pp. 369–373. doi: 10.1109/ICIMCIS60089.2023.10349017.

Setiawansyah, A. A. Aldino, P. Palupiningsih, G. F. Laxmi, E. D. Mega, and I. Septiana, “Determining Best Graduates Using TOPSIS with Surrogate Weighting Procedures Approach,” in 2023 International Conference on Networking, Electrical Engineering, Computer Science, and Technology (IConNECT), 2023, pp. 60–64. doi: 10.1109/IConNECT56593.2023.10327119.

H. Sulistiani, S. Setiawansyah, A. F. O. Pasaribu, P. Palupiningsih, K. Anwar, and V. H. Saputra, “New TOPSIS: Modification of the TOPSIS Method for Objective Determination of Weighting,” Int. J. Intell. Eng. Syst., vol. 17, no. 5, pp. 991–1003, Oct. 2024, doi: 10.22266/ijies2024.1031.74.

C. Z. Radulescu and M. Radulescu, “A Hybrid Group Multi-Criteria Approach Based on SAW, TOPSIS, VIKOR, and COPRAS Methods for Complex IoT Selection Problems,” Electronics, vol. 13, no. 4, p. 789, Feb. 2024, doi: 10.3390/electronics13040789.

A. F. O. Pasaribu, “Decision Support System for Best Supplier Selection Using Simple Additive Weighting and Rank Sum Weighting,” Chain J. Comput. Technol. Comput. Eng. Informatics, vol. 1, no. 3, pp. 106–112, 2023.

R. Cornaleus, A. Diana, and D. Achadiani, “Penerapan Metode Analytical Hierarchy Process Dan Simple Additive Weighting Untuk Pendukung Keputusan Dalam Penentuan Supplier,” ikraith-informatika, vol. 6, no. 3, pp. 132–140, 2022.

J. Tao, X.-H. Sun, Y. Cao, and M.-H. Ling, “Evaluation of water quality and its driving forces in the Shaying River Basin with the grey relational analysis based on combination weighting,” Environ. Sci. Pollut. Res., vol. 29, no. 12, pp. 18103–18115, 2022, doi: 10.1007/s11356-021-16939-z.

P. Citra, H. B. Santoso, and I. W. Sriyasa, “Sistem Pendukung Keputusan Pemilihan E-Commerce Menggunakan Pembobotan Entropy dan COPRAS,” J. Ilm. Inform. dan Ilmu Komput., vol. 3, no. 1, pp. 36–45, 2024, doi: 10.58602/jima-ilkom.v3i1.25.

S. Setiawansyah, “Penerapan Metode Entropy dan Grey Relational Analysis dalam Evaluasi Kinerja Karyawan,” J. Data Sci. Inf. Syst., vol. 2, no. 1, pp. 29–39, 2024, doi: 10.58602/dimis.v2i1.100.

A. D. Wahyudi, S. Sumanto, S. Setiawansyah, and A. Yudhistira, “Sistem Pendukung Keputusan Rekomendasi Hotel Bintang Tiga Menggunakan Kombinasi Entropy dan Combine Compromise Solution,” Bull. Artif. Intell., vol. 3, no. 1, pp. 16–25, Apr. 2024, doi: 10.62866/buai.v3i1.142.

J. H. Lubis, M. Mesran, and C. A. Siregar, “The Decision Support System for Cashier Recruitment Implements the Multi-Attribute Utility Theory Method,” Build. Informatics, Technol. Sci., vol. 6, no. 1, pp. 257–264, 2024.

R. Nuari, S. Setiawansyah, and M. Mesran, “Penerapan Sistem Pendukung Keputusan Pemilihan Cleaning Servis Terbaik Menggunakan Kombinasi Metode Pembobotan Entropy dan COPRAS,” Build. Informatics, Technol. Sci., vol. 6, no. 2, pp. 1169–1180, 2024, doi: 10.47065/bits.v6i2.5796.

Published
2024-09-30