Sistem Pendukung Keputusan Kenaikan Jabatan Bagian Produksi Menggunakan ROC dan ARAS
Abstract
Promotion in the production department is an important step that can improve the company's performance and operational efficiency. By promoting highly competent employees, leadership abilities, and a deep understanding of the production process, companies can ensure that production teams are led by individuals who are able to effectively manage resources, drive innovation, and improve output quality. One of the main problems is the existence of subjectivity in performance evaluation, where decisions can be influenced by personal preferences or inter-individual relationships, rather than on objective performance and competence. The purpose of this study is to provide tools that are easy to use by management in the process of evaluating and promoting employees, in order to support an effective and targeted decision-making process in the production environment by applying rank order centroid (ROC) and additive ratio assessment (ARAS) methods. So that it can make a real contribution in optimizing a fair and data-based promotion process in the production department, as well as increasing employee satisfaction and trust in the company's promotion policies. The result of the promotion recommendation that the candidate who received the highest rank was Candidate 5 with a score of 0.9305. These candidates are assessed as the ones who best meet the set criteria. Candidate 8 and Candidate 2 occupy the next position with values of 0.8684 and 0.8565. The results of this recommendation provide a clear picture of the performance and potential of each candidate, so that it can help the company in making fair and appropriate decisions in the process of promotion in the production department.
Downloads
References
F. Setiawan and T. Ardiansah, “Rancang Bangun Sistem Kepegawaian Menggunakan Metode Key Performance Indicator Untuk Rekomendasi Kenaikan Jabatan,” J. Artif. Intell. Technol. Inf., vol. 1, no. 3, pp. 130–137, 2023.
R. Akbar Saragih, N. Sari, Z. Mazaimi, I. Sary, and W. Arfan Syahputra, “Implementasi Sistem Pendukung Keputusan Kenaikan Jabatan Karyawan Menggunakan Metode AHP,” J. Inform. dan Teknol. Inf., vol. 2, no. 3, pp. 263–267, May 2024, doi: 10.56854/jt.v2i3.341.
S. Setiawansyah, S. H. Hadad, A. A. Aldino, P. Palupiningsih, G. Fitri Laxmi, and D. A. Megawaty, “Employing PIPRECIA-S weighting with MABAC: a strategy for identifying organizational leadership elections,” Bull. Electr. Eng. Informatics, vol. 13, no. 6, pp. 4273–4284, Dec. 2024, doi: 10.11591/eei.v13i6.7713.
Setiawansyah, A. A. Aldino, P. Palupiningsih, G. F. Laxmi, E. D. Mega, and I. Septiana, “Determining Best Graduates Using TOPSIS with Surrogate Weighting Procedures Approach,” in 2023 International Conference on Networking, Electrical Engineering, Computer Science, and Technology (IConNECT), 2023, pp. 60–64. doi: 10.1109/IConNECT56593.2023.10327119.
A. Faris and A. K. W. Hapantenda, “Sistem Pendukung Keputusan Rekomendasi Tempat Wisata Di Pulau Bawean Menggunakan Metode Analytical Hierarchy Process,” SABER J. Tek. Inform. Sains dan Ilmu Komun., vol. 2, no. 1, pp. 289–299, 2024, doi: 10.59841/saber.v2i1.855.
A. R. Mishra, P. Rani, F. Cavallaro, I. M. Hezam, and J. Lakshmi, “An Integrated Intuitionistic Fuzzy Closeness Coefficient-Based OCRA Method for Sustainable Urban Transportation Options Selection,” Axioms, vol. 12, no. 2, p. 144, Jan. 2023, doi: 10.3390/axioms12020144.
H. Sulistiani, S. Setiawansyah, A. F. O. Pasaribu, P. Palupiningsih, K. Anwar, and V. H. Saputra, “New TOPSIS: Modification of the TOPSIS Method for Objective Determination of Weighting,” Int. J. Intell. Eng. Syst., vol. 17, no. 5, pp. 991–1003, Oct. 2024, doi: 10.22266/ijies2024.1031.74.
S. H. Hadad, “Penerapan Metode Additive Ratio Assessment (ARAS) Dalam Pemilihan Guru Terbaik,” Chain J. Comput. Technol. Comput. Eng. Informatics, vol. 1, no. 4, pp. 170–178, 2023.
M. W. Arshad, R. R. Suryono, Y. Rahmanto, S. Sumanto, S. Sintaro, and S. Setiawansyah, “Combination of Objective Weighting Method using MEREC and A New Additive Ratio Assessment in Coffee Barista Admissions,” TIN Terap. Inform. Nusant., vol. 5, no. 3, pp. 220–231, Aug. 2024, doi: 10.47065/tin.v5i3.5771.
S. B. Atim and R. Arundaa, “Metode A New Additive Ratio Assessment (ARAS) Dalam Penentuan Pegawai Honor Berprestasi,” J. Inf. Technol. Softw. Eng. Comput. Sci., vol. 2, no. 1, pp. 40–48, 2024, doi: 10.58602/itsecs.v2i1.96.
N. A. Mohamad, N. H. M. Desa, and M. M. Kasim, “Poverty index development by using rank order centroid and simple additive weighting method,” in AIP Conference Proceedings, 2023, vol. 2896, no. 1.
S. Fatimah and T. Ardiansah, “Kombinasi Metode MOORA dan Rank Order Centroid dalam Sistem Pendukung Keputusan Pemilihan Supplier Produk Sepatu,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 5, no. 1, pp. 28–38, 2024, doi: 10.30865/klik.v5i1.1856.
H. Sulistiani, Setiawansyah, P. Palupiningsih, F. Hamidy, P. L. Sari, and Y. Khairunnisa, “Employee Performance Evaluation Using Multi-Attribute Utility Theory (MAUT) with PIPRECIA-S Weighting: A Case Study in Education Institution,” in 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS), 2023, pp. 369–373. doi: 10.1109/ICIMCIS60089.2023.10349017.
al wendi, “SISTEM PENDUKUNG KEPUTUSAN KENAIKAN JABATAN MENGGUNAKAN METODE PROFILE MATCHING (Studi Kasus PT. Beyf Bersaudara),” Smart Comp Jurnalnya Orang Pint. Komput., vol. 9, no. 2, pp. 99–104, Jun. 2020, doi: 10.30591/smartcomp.v9i2.1941.
F. M. Sabir, M. Mashud, A. Halid, A. Asrul, and R. Rumallang, “Penerapan Metode Multi Criteria Decision Making Sebagai Sistem Penunjang Keputusan Promosi Jabatan Karyawan Di PT. Fastfood Indonesia Tbk,” J. Minfo Polgan, vol. 13, no. 1, pp. 150–163, Feb. 2024, doi: 10.33395/jmp.v13i1.13500.
J. Wang, S. Setiawansyah, and Y. Rahmanto, “Decision Support System for Choosing the Best Shipping Service for E-Commerce Using the SAW and CRITIC Methods,” J. Ilm. Inform. dan Ilmu Komput., vol. 3, no. 2, pp. 101–109, 2024, doi: 10.58602/jima-ilkom.v3i2.32.
Copyright (c) 2024 Yuri Rahmanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.